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Abstract—Image guided surgery systems aim to provide
navigation to surgeons in order to improve accuracy and safety
of the procedures. Through stereo reconstruction algorithms, it
is possible to generate 3D surfaces intra-operatively by means
of a laparoscopic stereo-camera. This study aims to setup a
simulation system and quantitatively validate a recent proposed
reconstruction algorithm with application to laparoscopic liver
resection surgery. The intra-operative surface will be used to
guide model to patient registration. This will also improve
accuracy of the navigation by correcting intra-operative defor-
mations of the liver, such as those due to pneumoperitoneum.
The accuracy results of the reconstruction method was found to
be 3.7±0.8 mm in terms of Hausdorff distance. The validation
therefore indicates the feasibility and accuracy of the surface
reconstruction method.

1. Introduction

Image guided surgery utilizes computer based tech-
niques to provide imaging and navigation throughout med-
ical procedures to support surgeons [1], [2]. In the past
decade, with the technological advances in computer science
and medical imaging, image guided surgery has greatly
expanded.

The image guidance is based on a combination of med-
ical images, such as Magnetic Resonance Imaging (MRI)
or Computed Tomography (CT) and instrument tracking
for surgical instruments. This information is displayed to
surgeons either through Augmented Reality (AR) or through
separate monitors. Image guided surgery is however compli-
cated by the fact that most volumetric images are acquired
pre-operatively. This is a problem especially within the field
of laparoscopic surgery, where inflation of the patient’s
abdomen is performed. Pneumoperitoneum is, in fact, nec-
essary to have enough space in the abdomen to visualize the
patient’s organs through the laparoscope camera, however,
the inflation also deforms the shape of the organs [3]. This
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leads to less accurate image guidance, which could also
cause misinterpretation of the anatomical structures. Hence,
update of pre-operative organ models through intra-operative
imaging, such as stereo-laparoscopy, is necessary to account
for these deformations.

In order to improve the depth perception to account for
loss of haptic feedback due to laparoscopic surgery, stereo
laparoscopes have been introduced into modern surgery.
Stereo-cameras can not only provide better depth perception,
but also provide information to reconstruct volumetric data
(surface reconstruction) through computer vision techniques.
Surface reconstruction in computer vision has also been per-
formed using techniques such as Time-of-Flight (ToF) and
Structured Light (SL), however, stereo-vision has the benefit
of not introducing new hardware to surgery. Moreover,
stereo surface reconstruction is more accurate with respect
to monocular vision based reconstruction methods [4], [5].

Image guided surgery based on stereo vision has been
researched for decades with various application fields, such
as heart surface reconstruction to abdominal soft tissue
reconstruction [6]–[8]. Simulation systems and test datasets
are available in the literature to perform quantitative evalua-
tions of reconstruction algorithms. In [9], Maier-Hein et al.
present a comparative study of different organ reconstruction
methods under their simulation environment and the dataset
is public available. In [10], Suwelack et al. made publicly
available their dataset to test their liver registration method.
In [11], a validation of image guided liver laparoscopic
system is presented. In [12], Heiselman et al. created a
laparoscopic environment based on an abdominal phantom
system, aiming for a quantitative assess registration accu-
racy. Nonetheless, although some datasets are available for
the evaluation of surface reconstruction or registration, the
datasets are valid only for their specific experimental setup.
In [8], testing of the reconstruction method was performed
based on datasets available online. However, to explore the
validity of proposed algorithms in a more realistic scenario,
validation also needs to be performed in a simulation setup
which reproduces the desired application of the algorithm.



In this paper, both a simulation setup for laparoscopic
liver surgery and a validation procedure of a recently pub-
lished surface reconstruction method are presented. The
purpose of this study was to: (1) setup a simulation sys-
tem to quantitatively evaluate liver surface reconstruction
and registration algorithms for stereo laparoscopic surgery;
(2) quantitatively evaluate the liver surface reconstruction
method proposed in [8].

The structure of this paper is organized as follows: Sec-
tion 2 describes the experimental setup and introduces the
methods used to perform the validation. Section 3 presents
the results of the experiments. Section 4 is the discussion of
the results of this study. Section 5 describes the conclusions
and future works.

2. Materials and Methods

The workflow for validation of the reconstruction
method is shown in Fig. 1. The validation was performed
using a liver phantom model based on real human anatomy.
The steps performed for validation and evaluation of the
reconstruction method were based on the conventional ap-
proach for planned liver laparoscopic resection surgery. Ini-
tially, a pre-operative 3D segmentation model was created
from a CT scan, thereafter, an intra-operative 3D surface
reconstruction from stereo laparoscope was acquired, and
finally registration between the two surfaces was performed.
CT imaging of the liver phantom was used as ground truth
for the reconstruction, therefore the distance between the
two surfaces represents the inaccuracy of the reconstruction
algorithm.

2.1. Experimental Setup

The experimental setup is shown in Fig. 2. The liver
phantom used throughout the experiments was produced by
the ARTORG centre and Cascinationr. In addition to the
phantom, 10 multimodality fiducial markers (IZI Medical
Productsr) were attached to the liver phantom in order to
aid registration between the stereo surface reconstruction
and the CT scan segmentation. An intra-operative CT (Artis
Zeego, Siemensr) scan (DynaCT) of the liver phantom was
performed with the phantom positioned on the surgical table
(Fig. 2 (a)). A flex3D Olympusr stereo laparoscope camera
was used to capture the stereo images in a laparoscopic

Figure 1. Workflow for registration of intra-operative reconstructed surface
from stereo camera to surface extracted from DynaCT scan.
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Figure 2. Illustration of the experimental setup. (a) DynaCT scan ac-
quisition of the liver phantom; (b) Experimental setup for liver surface
reconstruction; (c) Stereo images captures of the liver phantom.

Operating Room (OR) (Fig. 2 (b)). The stereo laparoscopic
images were acquired using a DeckLink Duor by Black-
Magic Design, the stereo captures of the liver phantom can
be seen in Fig. 2(c).

2.2. DynaCT Scan Segmentation

Segmentation of the liver phantom parenchyma was
performed on 3D Slicer 4.6.2 through a combination of the
ThresholdEffect and LevelTracingEffect modules. The label
map, with a threshold of µ1 = -201.98 [voxel intensity]
was then used to create a model of the surface. A second
segmentation was also performed, with a higher intensity of
µ2 = 841.34, to segment the markers. The marker centroids
were successively separately classified through Fuzzy C-
Means classification (FCM) and clustered to obtain a single
position for each marker [13].

2.3. Stereo Surface Reconstruction

Prior to liver surface reconstruction, camera calibration
was used to compute the intrinsic and extrinsic parameters
of the stereo laparoscope camera. Calibration was performed
based on Zhang’s camera calibration algorithm [14] by a
checkerboard pattern (Fig. 2 (b)). Calibration parameters
were computed through a total of 26 calibration image pairs
with an average reprojection error of 0.737 pixels. This cam-
era calibration method was chosen because of its notoriety
and extended use in the camera calibration community [14].

In order to lower the noise introduced by the background
of the image, the stereo laparoscope camera images, shown
in Fig. 2 (c), were segmented via the Graph Cut segmen-
tation method [15]. This allowed to create a mask which
only contained the liver surface and a background with zero
average.



A dense intra-operative liver surface was reconstructed
according to the algorithm proposed by Wang et al. in [8].
The algorithm first performs a global variational based dis-
parity estimation method on the coarse pyramid level of the
image based on gray level intensity and gradient constancy
assumptions [16]. Successively, the low-resolution disparity
map is up-sampled to the original scale. Triangulation tech-
nique [17] was used to generate the surface based on the
disparity map.

Finally, to remove the effect of the background in
the point cloud reconstructions, thresholding of the RGB
channel at [50,50,50] of the cloud points was applied.
This threshold value was chosen empirically. This addi-
tional thresholding allowed to partially remove some outliers
which were due to masking of the stereo images.

2.4. Registration

The images of the liver phantom were acquired with
the stereo camera at distances similar to those used for
laparoscopic surgery (approximately at 5-10 cm from the
liver). For this reason, the surface reconstruction could
only reconstruct patches of the liver (parts of the liver
included in the stereo images), and therefore not the entire
liver surface, as visible in Fig. 3. For this reason, the
registration between the segmented liver parenchyma and
the reconstructed surface needed to be aided through the
use of fiducial markers via point based registration [18].
The marker positions segmented from the camera images
were reconstructed and registered to the marker centroids
of the CT scan segmentation [19]. Finally, the registration
between the CT scan point cloud and the reconstructed
surface point cloud was further refined using Iterative Clos-
est Point (ICP) registration between the two surfaces [18].
ICP was performed using a down sampled version (2%)
of the reconstruction point clouds. An illustration of two
registration results between the surface reconstruction and
the CT is shown in Fig. 3.

Figure 3. Surface reconstruction examples from single stereo images (red)
rigidly registered to the CT scan segmentation (colour map). The error is
represented by the distances between the two surfaces, with axes in [mm].

3. Results

A total of 30 stereo image pairs of the liver phantom
were used for the performance evaluation of the reconstruc-
tion method using two common metrics, namely the Mean

Absolute Error (MAE) and Hausdorff distance. The data
was divided into 2 datasets of 15 reconstructed point clouds.
Dataset1 encompasses 15 reconstructed point clouds of the
liver phantom in its original configuration. Dataset2 includes
another set of 15 reconstruction surfaces after application of
a deformation to the flexible liver phantom. Both reconstruc-
tion sets were associated to their respective CT scans used
as ground truth for the 30 reconstructed surfaces.

The Mean Absolute Error ((MAE), Eq. (1)) between
the registered liver surface Ŷ and the liver parenchyma
segmentation from the CT scan Y was computed as measure
of accuracy for the registered points of the reconstruction
surface and was calculated according to:

MAE =
∑

(x,y,z)∈Ω

1

N
|Ŷ (x, y, z)− Y (x, y, z)|, (1)

where N is the number of points, (x, y, z) denotes the 3D
coordinates of the points, Y presents the surface point cloud
extracted from CT scan and Ŷ is the point cloud obtained
by stereo vision reconstruction.
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Figure 4. Box plot representation of the MAE between two surfaces Ŷ and
Y . (a) Dataset1; (b) Dataset2.

The MAE between corresponding points through ICP
registration for both datasets are presented in the boxplots
of Fig. 4. The mean of the MAE throughout the 30 recon-
structed surfaces was found to be µ = 4.6 mm (mean) for
Dataset1 and µ = 4.4 mm (mean) for Dataset2.

As previously stated, only 2% of the reconstructed 3D
points and points from CT were used for registration. The
MAE therefore was only evaluated across 2% of the point
clouds, which are also points used for registration. In order
to evaluate the accuracy of the reconstruction on also other
points of the reconstructed surface, Hausdorff distance was
calculated, according to [20]:

H(A,B) = max(h(A,B), h(B,A)), (2)

where A is the reconstructed point cloud and B represents
the point cloud from CT scan. The function h(A,B) is
known as directed Hausdorff distance and is defined by:

h(A,B) = max
a∈A

min
b∈B
||a− b||, (3)

where || · || denotes the Eucledian norm of the pointwise
distances, a denotes a single point from the point cloud A
and b is a single point from B.



Figure 5. Example of Hausdorff distance error map. The reconstructed distance map is represented through the colormap, whereas the CT scan segmentation
is the white point cloud. The histogram on the left side denotes error for each point in the reconstruction (error in [mm]), the closer the two surfaces, the
lower the error. Average distance of 3.3 mm, although outliers in blue colour appear with a Hausdorff distance of 26 mm.

Meshlabr was used to compute unidirectionally the
Hausdorff distance to the CT scan following the implemen-
tation presented in [21]. In Fig. 5, one of the results of
the Hausdorff distance map is presented. The CT scan seg-
mented surface is illustrated as a white point cloud, whereas
the Hausdorff distance map is plotted in colormap, where
red intensity defines proximity of the surfaces and blue
indicates higher error values. The quality histogram label
map bar in the left side of the image denotes distribution
of the error. Most of the reconstructed points achieve a low
error, while there are some outliers which have high error
values, similarly to what was found through MAE.

TABLE 1. MAE AND HAUSDORFF IN [MM] IN TERMS OF MEAN µ,
STANDARD DEVIATION σ AND MAXIMA FOR Dataset1 AND Dataset2.

Dataset1 Dataset2

MAE (µ± σ) 4.6±1.0 4.4± 0.8

maxMAE 128.8 105.2

Hausdorff (µ± σ) 3.7±0.8 3.6± 0.8

maxH 78.5 106.6

4. Discussion
The surface reconstruction approach presented in [8]

relies on the intensity and gradient values of the whole
image for stereo image reconstruction. Tab. 1 shows the
mean, variance and maxima values for both measures of
evaluation, MAE and Hausdorff distance. Overall, MAE and
Hausdorff distances show that the reconstruction method
proposed in [8] currently performs accurate reconstructions
in the order of 3 or 4 mm.

From Fig. 4, the results show an accurate reconstruc-
tion of the liver surface through single stereo image pairs.
However, a large presence of outliers is also visible in
Fig. 4. These are either due to errors which are introduced
inevitably through triangulation steps, as pointed out in [11],
or to outliers created by the segmentation and reconstruction
algorithm. Through image processing methods, the outliers
could be lowered greatly. This holds especially those caused
by incorrect segmentation of the stereo images. The outliers
present are also due to artefacts such as light reflection
(on the surface), which causes large incorrect peaks in the
reconstructed surface. These effects can be reduced through
image enhancement techniques such as [22].

Moreover, other sources of noise in the reconstruction
include the image quality of the flexible stereo laparoscope
camera used for this study. It presents noisy images and
therefore affects the smoothness of the image reconstruction.
Testing should be performed with other stereo laparoscope
cameras through multiple image acquisition methods.

Segmentation of the liver surface from CT scan also
introduces errors in the ground truth data. Firstly, this is due
to inaccuracies inherent to the CT scanner itself. Secondly,
the process of volume segmentation also creates smooth
models which do not replicate the exact texture and surface
of the liver phantom itself and therefore provides an in-
correct ground truth. Inaccuracy in the registration through
markers could be improved using smaller markers, which
would consequently lead the ICP registration to a more
accurate solution and a better definition of the error.

To understand the true value of this reconstruction al-
gorithm for image guided surgery, expansion of the re-
constructed surface should be performed through computer
vision algorithms, such as surface stitching. This will allow
the reconstruction to cover the full surface of the liver.



5. Conclusion

This study describes a simulation setup and validation
of a surface reconstruction method based on stereo vision
with application to image guided laparoscopic liver resection
surgery. The tests were performed using available equipment
in OR based on conventional approaches for planned laparo-
scopic liver resection surgery. The surface reconstruction
was performed on a liver phantom which represents human
anatomy. Conclusion of the study was that the approach for
the reconstruction through stereo camera, according to the
method proposed in [8], is valid.

The aim of the surface reconstruction method will be
to improve the accuracy of image guided surgery, through
automatic processes of registration of volumetric data, such
as CT and MRI, to the laparoscopic perspective. This will
allow the surgeon to visualize structures hidden underneath
the surface, such as blood vessels, or surgical planning
resection planes [23], directly overlayed on top of the
camera perspective. In order to improve the reconstruction
algorithm according to the problems described in Section 4,
the reconstruction method will be combined with computer
vision algorithms such as hand-eye calibration for camera
image tracking subsequent stitching algorithms. The validity
of the algorithm will be further explored and tested in a
surgical environment, in order to understand its accuracy in
a clinical scenario.
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